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Abstract

PERSEUS program from CNES has been offering students the opportunity to contribute to the design,
manufacture, testing and launch of sounding rockets for 17 years.

These conditions, unlike traditional development of space systems, require work steps to be quick
(students are often involved for only a few months) and light (in learning and economic resources),
making cost and openness design criteria; prioritization of needs becomes key to ensure continuous
progress and delivery on time for launch campaigns.

PERSEUS follows Agile principles to incrementally develop a set of modular, flexible and adaptive
building blocks including avionics systems described in this article, for ASTREOS family successive
bi-liquid launchers.

1. Specificities of the context and adapted development method
1.1 PERSEUS project background

The space sector is undergoing a major shift, with disruptive innovations and new players. For the last 17 years, the
PERSEUS program [1] of the French space agency (CNES) is a cornerstone of the relationship between future
engineers, academic institutions and the space industry. Indeed PERSEUS aims at raising students’ awareness of these
economic, strategic and scientific dimensions, promoting the research of promising technologies and developing
vocation for the “NewSpace”.

For the past few years, many space-eager student associations have the opportunity to design experimental rockets of
modest size based on low-power solid propulsion, and launch them during dedicated annual events such as the
European Rocketry Challenge (EuRoc) or the C'Space. These events are an interesting entry point into the space field,
especially to understand the basics of flight dynamics, but they do not put emphasis on the constraints and complexity
of real modern launchers such as reusability with sophisticated GNC capabilities or high-pressure liquid cryogenic
propulsion system.

Therefore, we involve hundreds of college students dispatched throughout France in the design and manufacture of a
small reusable bi-liquid LOX-Ethanol propelled launcher named ASTREOS, which is launched from Esrange Space
Center in Northern Sweden alongside industrial and commercial rockets.

For that purpose, PERSEUS relies on contributions and inputs from dozens of universities, schools and associations;
each student can be involved for short periods of time (a few hours a week for a few months) or for longer periods of
time (several years in their curriculum, internship or gap year and in an associative framework).

As far as avionics is concerned (but the same applies to other areas), each entity has its own teaching, e.g. preferred
computing environment or modeling framework (such as SolidWorks / CATIA, Matlab / LabView) and its specialties
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depending on whether they are more electronics oriented, software programming focused, or rather generic and
versatile. Consequently, mind-set and skills of students from a given school often prove to be more suitable for certain
tasks than others.

Despite these differences in school habits and work environments, one of the pitfalls to be avoided is that everyone
starts from scratch each time, so capitalizing on developments and smoothly transferring modules from teams to teams
is a major challenge for the team coordinating the PERSEUS student work.

1.2 Avionics development strategy

Thus, a good way to standardize and facilitate software development over time, across all these diverse participants is
to use proprietary framework and software as little as possible because it would require too much effort (in time, money
and learning) to adapt the produced blocks from one environment to another. In a similar way for hardware platforms,
it seems unwise to choose a proprietary board linked to this or that environment, e.g. CompactRIO for National
Instruments or Speedgoat for Simulink Real-Time™.
In order to achieve an effective collaboration between our partners and a straightforward integration of the produced
modules, while keeping financial investments as low as possible, the best strategy is the extensive use of open-source
software and generic mainstream hardware platform.
This strategy of openness allows to lower costs, and at the same time to avoid:

e to compartmentalize and get stuck in an environment or to be dependent on a provider

e to require from schools to make an investment prior to their participation in PERSEUS, which results into

getting a very wide range of participating schools

On the hardware side, homemade microcontroller-based systems show a clear lack of simplicity and scalability,
implying not only software but also hardware adjustments in order to fulfil each functional or performance evolution;
the sum of specification, hardware and software development, integration and test leads to a process that is far too
burdensome for the objectives and context of PERSEUS.
For reasons of:

e modularity with numerous flexible and evolving interfaces

e simplicity of implementation as SSH/FTP client is sufficient for a complete remote development environment

e portability as produced code and library are not platform-dependent

e scalability notably for evolved and resource-hungry functionalities like GNC, AFTS or video stream

e case of maintenance,
... a Single Board Computer (SBC) is used rather than a microcontroller.
After a thorough comparison of available mainstream SBC based on various versatility and performance criteria, taking
into account that it is the most widely studied in engineering courses and also one of the least expensive, we have
chosen the Raspberry Pi 4 as a building block for the avionics development. It is based on a 64-bit quad-core Cortex-
A72 processor with up to 8GB RAM, hardware-based 1080p30 encode capability and Gigabit Ethernet, while keeping
a maximum power consumption of 15W. Nonetheless, to optimize occupation of a very restricted volume on-board
and to minimize energy consumption, we also use the Raspberry Pi 0 with its tiny size (65 x 31 x 13 mm) and reduced
performance for less demanding systems like sensor data acquisition modules.

On the software side, for comparable reasons of:
e cost without mandatory proprietary licenses to pay,
performance as it remains the most efficient language,
versatility despite its low-level character,
support in schools and still considered as a key element in embedded software engineering,
large availability of software libraries,
... the C language and open-source libraries are used as much as possible rather than proprietary ones.
One limitation of this logic lies in the GNC side, since Matlab/Simulink keeps being the most efficient means in
PERSEUS context to quickly design and adapt the control laws, to simulate the mission. However this use of a
commercial platform is limited to the strict minimum; once designed, output laws and code are then ported to C.

1.3 Agile methodology

Given the objectives of PERSEUS to move quickly from one demonstration step to the next one, and its development
team constituted of various actors, mainly successive students from different courses involved on a limited time and
remote locations, the development process needs to be broken down into small blocks that are successively assembled
and integrated until the rocket is flight-ready.
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Such scheme is clearly in line with the Agile approach that has emerged few decades ago to adopt a more dynamic and
collaborative methodology for software developments, resulting in several lightweight development methodologies
like Extreme Programming (XP), Scrum and Test-Driven Development (TDD).
The Agile methodology [2] is based on emphasizing the importance of:

e interactions over process,

o working software over documentation,

e collaboration over negotiation,

e responding to change over following a plan.
All these factors stay important and useful in building software solutions, but keeping in mind this “new” order of
priority will help towards better satisfying customers.
More widely than for software development, the agile approach of greater focus on people, a working solution (to be
enriched incrementally), collaboration (with client), and flexibility (with regards to requirements), enables many types
of teams to adopt a mind-set giving more ability to answer new challenges.
In accordance with the Agile principles, the PERSEUS team follows an iterative and incremental workflow for the
whole development of the space launch demonstrators and rockets, inspired from the Scrum framework; much like a
rugby team (where it gets its name) training for the big game, Scrum encourages teams to learn through experiences,
self-organize while working on a problem, and reflect on their wins and losses to continuously improve. This method
is applied also at the level of the different domains: obviously avionics, GNC, Ground segment, etc. and their associated

products.
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Figure 1: Scrum iterative and incremental workflow [3]

Traditional Scrum workflow as shown in Fig.1 is adapted and lightened, e.g. since student teams often have only one
or half a day per week to contribute it is impossible to hold a daily meeting, moreover the role of Scrum Master and
Product owner are actually assumed by the same person, namely the PERSEUS coordinator of a specific domain
(avionics, ground segment, ...).

However, we keep the pace of a Sprint every 2 to 4 weeks with a unique remote meeting for each team, which serves
as a mixed all-in-one Sprint planning in order to agree on the next Sprint Goals and on the expected deliverables,
review produced outputs and discuss encountered difficulties through a retrospective. This 20 to 30 minutes meeting
every 2-4 weeks appears to be the best balanced between autonomy and responsibility given to students, technical
support that is essential to help them move forward and overcome certain obstacles and time spent to ensure effective
flow of activities spread over dozens of student groups; and all this thanks to the structure provided by the Scrum
method.

Thus PERSEUS avionics is developed through continuous integration of a set of modular, flexible and adaptive
building blocks, designed and incrementally enhanced to rapidly evolve across ASTREOS successive iterations;
ASTREOS version’s capabilities are allocated to avionics products, and the relevant universities are involved with
targets and regular deliverables, starting with a prototype that meets the basic operational needs which is increased in

complexity as development goes along.
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2. A ruggedized and functionalities-enhanced mainstream Single Board
Computer (SBC)

As previously stated, for versatility, performance and cost reasons, we have made a thorough comparison of available
mainstream generic Single Board Computer (SBC) based on various comparison criteria, e.g. supported operating
system, degree of portability of homemade software and hardware extension from one SBC to the other, available
standardized and/or open-source libraries and how widespread the board is in engineering schools. Raspberry Pi 4 and
Zero have appeared to be the best candidates, with the advantage of easily reusing software bricks notably GPIOs-
related, through two form factors meeting distinct needs, i.e. computationally demanding operations for complex
systems like the On-Board Computer and lower space and power consumption for distributed measurement and control
systems.

Nonetheless, such mainstream products lack some characteristics to be operational, ruggedized and flight-ready
systems compatible with the flight dynamics and environment. First of all, electromagnetic interference (EMI) must
not be neglected, they are induced by sources both inside the rocket through the stacking of several electronic
equipment, and outside the launcher from radio-frequency equipment and a harsh very cold and humid environment in
the Swedish Space Center (SSC), which is our usual launch base. Furthermore, despite a native support of many
protocols thanks to the GPIO pins, like SPI, PWM or basic discrete signals, we need an even broader support of both
digital and analog communication protocols in order to integrate a large variety of data measurement and actuator
control systems.

The best efficiency-driven solution is then to conceive a generic extension board to enhance these mainstream hardware
platforms through a minimalist design, and turn them into a ruggedized fully featured low-cost flight-ready system.
A first result of such an approach is shown in Fig.2, with a Raspberry Pi 4 directly coupled to a homemade extension
board in order to manufacture the On-Board Computer of PERSEUS latest solid sounding rocket, named SERA IV.
One can observe that a particular attention has been given to reduce EMI. A greater electromagnetic compatibility level
is achieved by decoupling and applying a systematic galvanic isolation on each on-board system through key
component such as:
e DC-to-DC converter to isolate and regulate internal power circuit from common backbone power circuit, with
an example of a sizeable Traco Power THN 20-2411 on the top side
e Optocoupler to transfer digital signals between two isolated circuits, notably three Isocom IS281 4-channel
transistor on the bottom side
e A clear and large separation of ground planes on the top side of the PCB in order to break potential ground
loops, prevent crosstalk and globally reduce electrical noise

Each reference has obviously been chosen after an exhaustive analysis of available components on the market in
accordance with distinct comparison criteria such as input voltage range, power efficiency, electromagnetic
compatibility, channel capacity, available bandwidth, occupied space, and, last but not least, price.

To ensure the compatibility of on-board systems with the vibration and acceleration levels that they have to undergo,
usual data interfaces like RJ45 or USB connectors can’t be used, therefore they have been unsoldered on the Raspberry
Pi 4, and these interfaces have been redirected through a tougher D-Sub connector and the intermediate EMI reducer
stage. But as Ethernet magnetics are no longer presents, an additional transformer with a schematic identical to the
removed connector has been added on the bottom side via an Abracon ALANS10001.

Such unsoldering process is quite long and tedious, and could be avoided with a SBC offering only one generic
pluggable connector, and it’s precisely what the Raspberry Pi Foundation offers through the Compute Module 4 with
a smaller form factor and a couple of 100-pin high-density Hirose connectors on the underside, nonetheless vibration
tests must be carried out to verify that mating connectors are compatible with flight environments.

Regarding the need to enable a wider support of digital communication protocols, a straightforward approach is to
integrate a COTS module with minimal design effort through a dedicated hole on the PCB, instead of designing a
specific routing with appropriate passive components in order to operate it as any other integrated circuit (IC). This
approach has been used to rapidly add an FTDI USB-RS485 PCB adapter instead of a dedicated circuit for the
FT232RQ IC with all necessary electronics, as RS485 communication protocol was a minor need only used in pre-
flight operations to configure our inertial measurement system and will not be used in upcoming iterations of
ASTREOS. A global COTS-based electronic design can then help to put in practice Agile methodology and improve
our ability to adapt and quickly respond to new needs that can emerge from other domains like ground segment, GNC
or propulsion system.
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Nonetheless, it is more difficult to apply this approach to analog circuits since a specific signal conditioning must be
carried out and an optimal filtering operated to maximize the signal-to-noise ratio for each sensor, as some will require
signal amplification to correctly process tens of millivolts while other will need a voltage divider to lower tens of volts.
Moreover a particular attention must be brought to the integration of analog circuits in order to split analog and digital
sections and keep a high level of electromagnetic compatibility, notably through a thin trace between each ground
planes. A certain degree of versatility and reusability of a dedicated analog circuit can however be achieved if a
synthesis of all probable input signals is conducted and taken into account to choose key components like an Analog-
to-Digital converter with a large bandwidth, programmable sampling rate and a sufficient precision to compute each
sensor data.

Finally, it is important to notice that such extension board is usually not needed when a student team contributes to
PERSEUS avionics and conceive a complex software system like the OBC, as ruggedize-oriented modifications are
only necessary for a flight-ready system and COTS modules can be bought in a fully Plug-and-Play boxed format
rather than raw to solder format. Henceforth, students are usually completely unaware of this necessary upgrades, and
they only need one or a few Raspberry Pi and some COTS related to the system under development. This strategy not
only facilitates the design, validation and integration processes, but also brings an obvious gain in terms of financial
participation and project takeover effort by the dozen of teams building ASTREOS launcher.

Figure 2: Top (left) and bottom (right) side of our extension board

3. A critical Ethernet-based communication network
3.1 Real Time Ethernet overview

In order to ensure scalability, flexibility and versatility of ASTREOS-1’s backbone communication network, the old
paradigm based on cohabitation of several generic and fieldbus protocols (USB, RS422, CAN...) is clearly outdated,
and can’t respond to growing data transmission needs implied by sophisticated GNC capabilities or even video
streaming.

Real Time Ethernet (RTE) network is an effective answer seriously considered by the academic field for almost two
decades, leading to comprehensive comparisons [4][5] of common industrial products like PROFINET, EtherCAT,
Ethernet POWERLINK (EPL), SERCOS III, Modbus, and lesser spread products such as JetSync, PowerDNA,
SyngNet, ControlNet or TCnet.

For all these products, the main challenge is to ensure a time-determinist communication with real-time guarantees
like minimal transfer delay, response time and jitter, while focusing on precise periodic exchange of small data records
through a temporally and bandwidth constrained traffic. Automotive, factory automation or more recently launch
vehicles [6][7] are some of the sectors where RTE network brings a clear breakthrough compared to traditional
communication systems.

Depending on the field of application, some characteristics of RTE technologies are prioritized over others, for example
delivery time, number of end nodes, network topology or the possibility of mixed RTE and non-RTE bandwidth may
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be put forward by some [8], while others [9] emphasize redundancy capacity, minimal redundancy recovery time or
time synchronization techniques and accuracy between end-stations.

Several performance indicators are designed to pragmatically compare and evaluate each product [10][11], for instance
the minimum cycle time (MCT) a system can achieve based on a specific number of nodes and frame size, varies from
ten microseconds to hundreds of milliseconds.

The most common classification of RTE protocols is based on the integration level compared to UDP/TCP/IP and
Ethernet layers, as shown in Fig.3. A common base for all Ethernet network is the two or four twisted-pair cables
universally used as physical layer. Henceforth, non-real-time applications make use of typical Internet protocols,
standard IP stack and Ethernet layer as defined in ISO 8802-3. The first RTE approach is to keep the TCP/UDP/IP
protocols unchanged and concentrate all real-time modification in the top layer; this solution is called “on top of
TCP/TIP”. In the second approach, the TCP/UDP/IP protocols are bypassed and the Ethernet layer is accessed directly
(“on top of Ethernet”). In the third approach, the Ethernet mechanism and infrastructure itself is modified to make it
more real-time performed (Modified Ethernet). Of course, depending on the chosen approach, the minimum cyclic
time will differ greatly, standard hardware and nodes will or will not be compatible, and the random nature of Ethernet
protocol will be more or less overcome.

Non-Real-Time Top of TCP/IP Top of Ethernet  Modified Ethernet

Non Real — Time Real — Time
protocol protocol

Real — Time Real — Time
protocol protocol

TCP/UDP/IP TCP/UDP/IP

[ Universal cabling

Figure 3: RTE categorization [5]

PROFINET or Modbus protocols are based on the first approach, and benefit from an easier integration with standard
IP stack, but can’t reach less than 5 ms of MCT with a hardly deterministic and predictable behavior. Real-time
guarantees are truly observed through second method with MCT from 100us to 1ms and the possibility to use ordinary
Ethernet hardware, and even mix IP-based on non-IP nodes, but with a significant impact on the time-determinist
subpart. The last approach used by SERCOS III or EtherCAT is obviously the most performant with MCT lower than
100us but specific hardware must be used and can’t coexist with regular Ethernet nodes.

In line with the overall avionics development strategy, the best fitted protocol to meet our needs must be open-source
oriented, with dependencies to any provider as limited as possible, and compatible with Raspberry Pi (RPi) generic
hardware platform. Consequently, protocols belonging to the third approach cannot be used. On the other hand,
protocols belonging to the second category offer a good balance between flexibility, versatility and real time
performance, notably through a well-known protocol named Ethernet POWERLINK (EPL). It is based on the
principle of a master—slave scheduling system with a polling scheme. The master, called the managing node (MN),
controls all accesses to the medium, ensures real-time access to the cyclic data and lets non-real-time IP frames pass
through only in time slots reserved for this purpose. The polling order is preconfigured before runtime but may be
modified during execution. All other nodes are called controlled nodes (CNs) and are only allowed to send on
request by the MN. The MN sends a multicast start-of-cycle (SoC) frame to signal the beginning of a cycle. The send
and receive time of this frame is the basis for the common timing of all the nodes. It is important to keep the start
time of an EPL cycle as exact (jitter-free) as possible. As shown in Fig.4, the following periods exist within one
cycle: Start period, Isochronous period, Asynchronous period, and an additional Idle period. The length of an
individual period can vary within the preset period of an EPL cycle.
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Figure 4: EPL cycle and sub-periods [11]

In the Isochronous period of the cycle, a Poll-Request (PReq) unicast frame is sent consecutively to every configured
and active node. The accessed node responds with a multicast Poll-Response (Pres) frame where it may indicate that
it has asynchronous traffic to send. The responses are sent in broadcast; traffic from node to node is hence supported.
Depending on the additional traffic requests, the master will start a sporadic window named Asynchronous period
where EPL network access may be granted to one CN or to the MN based on a priority scheduling policy, for the
transfer of a single asynchronous message only. The preferred protocol for asynchronous messages is UDP/IP. The
start-of-asynchronous (SoA) is a confirmation sent to CNs that all isochronous data has been exchanged during the
isochronous period. Thus, transmission of isochronous and asynchronous data will never interfere, as EPL offers
hard guarantees for the preplanned traffic and soft guarantees regarding the on-demand traffic.

3.2 openPOWERLINK over PREEMPT-RT on Raspberry Pi

Due to its open protocol nature, EPL communication can easily be designed and integrated into a hardware-based
solution (FPGA, ASIC, ...) for performance purpose, it is in fact the usual choice in the industry, but it is less fitted to
our application case, as it would require to bypass Raspberry Pi’s Ethernet chipset through an additional dedicated
network card. Fortunately, an open-source software-based implementation is also available via openPOWERLINK
(OPL) [12], managed by the Ethernet POWERLINK Standardization Group (EPSG), and supporting all major EPL
features such as Standard, Multiplexed and Poll_Response Chaining mode of operation, MN redundancy, SDO via
ASnd and UDP, as well as asynchronous communication via a Virtual Ethernet interface.

A two layer architecture is used by OPL with a user layer containing the application-centric code such as the object
dictionary while the kernel layer contains the time critical parts (e.g. data link layer). The user layer is composed of an
API that can be used by any application to configure and operate an OPL communication, and a set of software modules
linked to OPL stack that are bridged to other kernel specific modules through a communication abstraction layer
(CAL). The kernel layer is responsible for maintaining the actual OPL stack composed of protected in-memory
sensitive structures which can be modified and serves as a communication base for all kernel modules.

In order to easily deploy OPL on Linux systems and ensure a wider hardware compatibility without requiring any
specific development, the well-known libpcap library is used to capture and redirect network traffic to kernel modules,
instead of directly accessing resources through the hardware specific Ethernet driver, which is the Broadcom BCM2711
Ethernet driver for Rasperry Pi 4 platform.

This additional intermediate abstraction layer in the most resource critical layer implies non-negligible impacts on
performance, especially with a general-purpose operating system only rendered real-time capable through PREEMPT-
RT [13] patch, and even more on a quite resource limited Single Board Computer like the Raspberry Pi. For example,
a cluster of fifteen Raspberry Pi 4-based OPL nodes, can easily exchange tens of bytes on a cyclic period of 10 ms, but
any attempt to exchange large amount of non-critical data like video streaming during asynchronous period, will result
on frequent cycle time overruns. This should theoretically not be possible but it’s caused by accumulation of successive
response times in the call tree and an overload of network resources consumption. The results are worse within a cluster
of Raspberry Pi Zero nodes as isochronous-only exchange can also lead to cycle time overruns. In order to overcome
these limitations, the PCAP layer must be removed and a direct communication established between kernel modules
and Ethernet driver, as shown in Fig.5.



Mickaél GOMES, Sophie MISSONNIER, David TCHOU-KIEN

Figure 5: Initial and optimized OPL architectures

In practice, for the Raspberry Pi 4, a new OPL kernel module is implemented to encompass an intermediate dedicated
driver that enables an efficient communication with the BCM Ethernet driver. This intermediate driver is called by
OPL modules through external functions that provide high-level network capabilities, like sendTxBuffer(),
getMacAddr() or changeRxFilter(). To build a simple and lightweight driver, we rely on Linux’s generic
platform_driver which is a pseudo-bus capable of connecting devices on busses with minimal infrastructure. Then,
internal functions are in charge of interacting with two important structures, e.g. edrv and device driver, used as a
shared data-set with the genuine Ethernet driver as shown in Fig.6. Unfortunately, the Raspberry Pi Zero does not have
natively an Ethernet chipset, so an intermediary converter to a supported protocol as I2C, SPI or USB should be used.
For a complete Precision Time Protocol (PTP) functionality Microchip’s LAN9250 could be used, a simpler controller
with SPI interface like ENC28J60 or ENC424J600 is also an option, whereas GPIO signal pins can be spared with an
USB-based controller like the LAN9500A. This additional chipset may seem less straightforward compared to RPi 4’s
chipset, but these converters are fully documented with comprehensive datasheets and therefore can easily be
integrated, which is not the case for the BCM chipset with only Linux’s driver raw code as source of information.
Regardless of the controller chosen, a similar intermediate driver must be implemented using the appropriate protocol-
specific structure, for example usb_driver to achieve communication between OPL modules and LAN9500A USB-to-
Ethernet controller.

In a typical general-purpose use case, the time needed to implement a driver for each of the chipset to be used with
OpenPOWERLINK protocol may seem cumbersome, especially if we consider that each driver must evolve in line
with operating system updates. But it’s all the contrary from critical embedded systems point of view, as operating
system updates are rare and integrated chipset have lifetimes that frequently exceed fifteen years. For example, we are
running the last official PREEMPT-RT version for RPi e.g. rpi-4.19.y-rt which is three years old, and the most recent
of the previously identified controllers was released in 2015.

tEdrvinstance

Figure 6: Overall and external functions-specific diagrams
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3.3 Clock synchronization protocol

In order to precisely monitor each element of a launch system, in particular for safety and recovery purposes, analyze
each mission’s phase and related flight dynamics, or simply ensure a coherent actuators control within GNC‘s logic, it
is essential to compute a timestamp for every gathered sensor and actuator data, and maintain a synchronicity of these
timestamps at a higher system level. For example, Ariane 6 launch system must keep every time stamps precise within
10 ps in relation to other time stamps [6]. The old-fashion way to get such a system was to obtain Coordinated Universal
Time (UTC) through a ground-based GPS receiver designed for precision timing, commonly equipped with an IRIG
timecode [14] output. IRIG timecode are standard formats for transferring timing information via a continuous stream
of binary data. The individual time code formats can be distinguished from one another by the signal characteristics,
e.g. modulated versus unmodulated, which require different ways of signal transmission, by the data rate, and by the
kind of information included in the transmitted data. For example, IRIG BOx2 or B1x2 refer to a 100Hz bit rate
transmitting binary-coded decimal (BCD) day of year, hours and minutes, respectively through DC level shift or sine
wave carrier. A dedicated on-board module could receive this information and use a fieldbus multipoint serial
communication like RS-485 to widely exchange this master clock among every sub-systems.

However, in order to achieve an Ethernet-only avionics architecture, an Ethernet-based protocol must be used to enable
a synchronized clock among the network nodes. The Network Time Protocol (NTP) is the most widely used clock
synchronization protocol on the Internet. Still, it can achieve no more than one millisecond accuracy under ideal
conditions which is not adequate to reach the necessary quality of synchronization for critical measurement and control
systems. Fortunately, IEEE 1588v2 Precision Time Protocol [15] (PTP) specifically targets this issue of high accuracy
synchronization and can achieve sub-microsecond accuracy with adequate hardware implementation. It’s based on a
hierarchical master-slave architecture for clock distribution, with an elected root timing reference called the
grandmaster. The grandmaster transmits synchronization information to the clocks residing on its network segment.
The distributed architecture of the system implies the occurrence of different rates of clock drift between the individual
nodes. In order to avoid the individual local clocks to drift apart from each other, a clock readjustment mechanism is
cyclically operated between the grandmaster and each slave nodes, as shown in Fig.7.
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The efficiency of this mechanism can be greatly improved if the uncertainty introduced by switches and every
intermediary equipment is overcome. It can be possible if an end-to-end hardware support is done for every equipment
in the network, as each node will modify conveyed PTP messages according to his own clock. The delivery variability
across the network is compensated as timestamps in the messages are continuously corrected while traversing each
equipment, instead of a unique update after a lengthy back and forth bounce from master to slave.

In fact, Linux operating system natively supports both software and hardware PTP implementations as long as the
Ethernet controller and driver are compatible with at least one implementation. Unfortunately, Raspberry Pi 4 only
support software-based implementation after a kernel workaround and recompilation, due to lack of hardware PTP
support by the Broadcom BCM54213PE PHY, but the Compute Module 4’s new form factor is updated with a
BCM54210PE that will enable hardware support with observed performance within +/-50ns, thanks to an ongoing
kernel update [16] and upcoming branch merge. Regarding Raspberry Pi Zero platform, as previously stated, an
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additional Ethernet controller with PTP support like the LAN9250 must be used, but so far we have not managed to
identify an external controller with an official manufacturer-provided kernel driver supporting hardware PTP, thus, an
existing low-level Ethernet driver will probably need to be updated and recompiled if native support in Linux kernel
is not released in the upcoming months.

For an end-to-end hardware support, a PTP-compliant Ethernet switch must also be identified. Such products are
usually bulky with disproportionate overweight, but some companies [17] focused on size, weight and power sensitive
applications are now proposing miniaturized equipment of approximatively 5 x 5 x 2 cm and a maximal consumption
of 1.2W, without neglecting harsh environments support through ruggedized systems operating from -40°C to + 105°C.
Such improvements are made possible with the use of single-chip Ethernet solution with hardware time-stamping at
all PHY-MAC interfaces and a high-resolution hardware PTP clock, like Microchip’s VSC7512 unmanaged switch
featuring Layer-2 forwarding with basic VLAN and QoS processing, or KSZ8567 fully integrated Layer-2 managed
switch with seven 10/100 Ethernet ports.

4. ASTREOS new-generation avionics

As a result of the followed Agile philosophy, a modular, cost-efficient and upgradeable avionics architecture is ready
to serve as the basis for ASTREOS launchers, as shown in Fig.8, notably through the use of an homemade generic
extension board coupled to a mainstream SBC and a fully Ethernet-based communication network.

One critical mission of the avionics is to continuously provide a complete report on the behavior of the propulsion
system composed of three tanks containing azote, ethanol and liquid oxygen, in addition to several electro-valves in
order to manage the supply of propellants to the engine. The status on propulsion system operationality must be
computed through a variety of pressure, differential pressure and temperature sensors dispatched along the tanks, the
supply lines and the engine. These measurement and control systems are represented as purple boxes on the diagram,
and we can see that only three distributed systems on the upper, the middle and the lower part of the rocket are necessary
to operate twenty five sensors and actuators. Moreover, thanks to a versatile extension board coupled with a Raspberry
Pi Zero, these systems are easily interchangeable as specific electronic blocks have been conceived to ensure the
support of all necessary digital and analog communication protocols, and all these blocks are integrated into a unique
extension board design.

Another important goal for each mission is to record the flight environment especially during important phases like
subsonic to trans- and hypersonic, notably to compare obtained pressures, global and local surface strains and level of
vibrations with those expected through the simulation activities. These systems are spread out from the rocket nose to
its base. They are identified by green boxes on the overview figure and share the same extension board design.

In order to facilitate the integration of more complex and resource-intensive flight-ready systems like the On Board
Computer, a Video Module or the Inertial Measurement Unit, identified as dark blue boxes on the figure and dispatched
on the upper avionics bay, we have designed another extension board to match Raspberry Pi 4 form factor with
reduced Analog-to-Digital capabilities. In line with the strategy followed for acquisition and control systems, these
complex systems can efficiently be switched from one position to another on the avionics bay, as they mostly rely on
software implementation and share a common hardware platform.

One of the strongest requirements imposed by Esrange launch base, for recovery and safety issues, is the ability to
measure, compute and communicate the rocket trajectory. For a reliable and precise trajectory during all
propulsion, ballistic and return phases, a data-fusion must be performed of absolute positions which can be obtained
via GNSS for example, and relative positions usually through Inertial Measurement Unit. So several antennas and
receivers including GNSS, can naturally be observed on the synoptic as light blue boxes. In order to communicate
trajectory, but also propulsion system status, video stream and any significant flight-related data to the launch base a
circular S-band patch antenna and an S-Band transceiver is used for telemetry.

After a thorough survey, we have identified the XLink-S transceiver [ 18] from IQ Spacecom as a perfect match, since
it only weighs 200 grams and is very compact i.e. easily fits into 1U CubeSat, and most importantly it can deliver a
downlink data rate of up to 100 Mbps through an Ethernet interface and a Nano-D-Sub connector, which is completely
in line with our fully Ethernet-based architecture. In order to limit the impact on performance caused by the
multiplication of intermediate Ethernet devices, the number of switches is reduced to a strict minimum of 2, displayed
as brown boxes, and do not exceed the limit of 3 switches in cascaded topology beyond which the performance is
degraded. To meet future needs for additional systems, a mesh architecture will be implemented to maintain an optimal
level of network quality.

Such Ethernet architecture is naturally extended to the entire ground segment, thus guaranteeing a strong
compatibility between on-board and on-ground communication networks. For example, as tens of milliseconds

10
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accuracy is sufficient for ground operations, NTP is used to synchronize all ground equipment based on an UTC
forwarded by a dedicated GPS receiver. A strong synchronization between ground and on-board systems can then
easily be put into action, as long as an on-board module executes an NTP client and assumes the role of master within
the PTP avionics network. In fact, with the exception of some discrete signals used for instance to detect umbilical
tear-off, all the communication between on-board and ground segment is done through two pairs of twisted wires,
instead of the tens of wires necessary on previous PERSEUS’s launchers.

This avionics architecture responds efficiently to the needs of the first iteration of ASTREOS, whose main goal is to
allow to master the bi-liquid LOX-Ethanol propulsion as well as the solid propulsion used until now on PERSEUS.
But as explained throughout this paper, thanks to a strategic highly adaptive, scalable-aware and modular-focused
approach, with mostly open-source software and COTS-based hardware supported by a generic mainstream
platform with minimal specific developments to achieve a flight-ready system, we will be able to quickly and
incrementally integrate in a continuous Agile perspective, new building blocks to rapidly cover Thrust Vector Control
(TVC), Autonomous Flight Termination System (AFTS), fin controls and other sophisticated GNC capabilities for
ASTREOS upcoming iterations.

11
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